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Abstract-A simple approximate method for solving non-linear problems of non-stationary mass and heat 
transfer is suggested. The method guarantees accurate fulfillment of initial and boundary conditions, often 
leads to a correct asymptotic at large times and gives an accurate result for linear problems. Non-stationary 
heat transfer between a wall and a quiescent medium with the thermal conductivity coeflicient being 
arbitrarily dependent on temperature is investigated. Non-stationary problems of mass transfer with 

volumetric and surface reactions of any order are investigated. 

1. DESCRIPTION OF THE METHOD 

THE MOST common way of solving linear problems is 
to use different integral transforms of the unknown 
function (Laplace-Carson, Mellin and Bessel trans- 
forms and others [I]) which can tentatively be written 
in the form 

u=L*c (1) 

where c is the unknown function (inverse image), L 
some integral operator, and u the image. 

In a number of cases transform (I) can also be 
successfully used for an approximate analysis of non- 
linear problems by ‘carrying over’ the transform 
under the function sign according to the rule 

L *f(c) =f(L * c) =f(u) (2) 

wheref =f(c) is some non-linear function of the argu- 
ment c. The validity region of the approximate oper- 
ation (2) should be established separately in each 
specific case. 

Further, the discussion will be limited to the study 
of the Laplace-Carson transform which is defined as 

I 

x) 
u=L*c=p e+ c dr (3) 

0 

where p is the complex parameter. 
Non-linear parabolic equations of the following 

form will be considered : 

(4) 

with the initial and boundary conditions 

7 = 0, c = 4(x) (5) 

x = X,, c =$1(r); x = x2, c = $2(T) (6) 

where @, 4, JI,, J12 are arbitrary sufficiently smooth 
functions. 

Applying the Laplace-Carson transform (3) to 
problem (4)-(6) and ‘carrying’ it under the sign of the 
function G according to rule (2) gives the’approximate 
ordinary differential equation and boundary con- 
ditions for u 

Pb-d4x~l= Q(xJ4,$$$ (7) 

x = x,, u = al@); x = x2, u = a2(p) (8) 

wherea,(p)=L*JI,;i= l,2. 
Having constructed the solution of problem (7), 

(8) and then applying the Laplace-Carson inverse 
transform to u [l], one can find function c. 

The proposed approximate method leads to an 
exact solution for any linear problem. It always 
guarantees accurate fulfilment of initial and boundary 
conditions (5) and (6). Moreover, if the solution of 
problem (4~(6) is stabilized at large times, i.e. there 
exists the solution of the stationary problem 

x=x,,c=A,; x=x2,c=A2 

Ai = !!I Jli(r), where i = 1,2 (10) 

then the approach described gives a correct asymp- 
totic result for 7 -* co. 

The application of the ‘carry-over’ method of inte- 
gral transforms will now be illustrated on specific 
examples which are of interest for the theory of mass 
and heat transfer. As usual, attention will be mostly 
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NOMENCLATURE 

a length scale (radius of a droplet, bubble) K, constant of volumetric reaction rate 
C concentration k, dimensionless constant of the nth-order 
C, concentration on the surface of a wail, surface reaction rate, a&C:- ‘/D 

droplet, bubble k, dimensionless constant of the nth-order 
CO concentration of the initial time instant volumetric reaction rate, a2Kvc-‘/D 
c dimensionless concentration (determined n order of reaction 

in different ways) Pe Peclet number, aiJ/D(C,) 
D coefficient of diffusion, may be dependent Sh Sherwood number, equation (46) 

on concentration, D(C) t time 
b(c) D(c)lD(C,) u characteristic velocity of liquid 
F, surface reaction rate, F,(C), for the nth- u, translational flow velocity far from a 

order reaction, K,C droplet 
FV volumetric reaction rate, F,(C), for the U concentration image, equation (3) 

nth-order reaction, K,C” V dimensionless velocity of liquid 
J;(c) dimensionless rate of surface reaction, x distance to a wall 

aF,(C)/DCo, for the nth-order x X/a. 
reaction, f, = k,( I -c)” 

J”(c) dimensionless rate of volumetric 
reaction, a*F,(C)/DC,, for the nth- Greek symbols 
order reaction, fV = k,c” B ratio of droplet to surrounding medium 

j dimensionless diffusion flow on a wall, dynamic viscosities, /? = 0 corresponds 

- (MW.W 0 to a gas bubble 

KS constant of surface reaction rate ? dimensionless time, tD/a* or tD(C,)/a*. 

paid to the derivation of formulae for diffusion (heat) 
flows. 

2. MASS TRANSFER IN THE CASE OF 

ARBITRARY DEPENDENCE OR THE 

DIFFUSION COEFFICIENT ON CONCENTRATION 

An analogous formulation is employed for the 
problem on heat transfer between a wall and a 
quiescent medium with the thermal conductivity 
coefficient being arbitrarily dependent on tem- 
perature. 

Consider a non-stationary problem of mass transfer Applying the Laplace-Carson transform to equa- 
between a wall and a quiescent medium with the tion (1 l), initial and boundary conditions (12) 
coefficient of diffusion D being arbitrarily dependent carrying out the transform under the sign of the func- 

on the concentration C. tion 6, similarly to equation (7), one obtains 

The concentration distribution is described by the 
non-linear equation pu = -&D(u)g 

(11) 

under the following initial and boundary conditions : 

Here, the dimensionless variables are expressed in 
terms of dimensional ones with the aid of the follow- 
ing relations : 

co-c X 
c=m, x=;, ‘5 = y, b(c) = z 

I 

where Co is the concentration at the initial time 
instant, C, the concentration on the wall, X the dis- 
tance to the wall, t the time, and a the quantity which 
has the dimensions of length. The function b is intro- 

duced in such a way that the condition D(l) = 1 is 
valid. 

x=o,u= 1; x+‘-o, u-+0. (14) 

Taking into account the fact that the ordinary differ- 
ential equation (13) is not explicitly dependent on x, 
its order can be reduced by the standard substitution 

This yields 

pu = w&JD(u)w]. 

(15) 

(16) 

It can be easily checked that the general solution of 
this equation has the form 
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2p 
I 

” u&u) du = [b(u)w]‘+B (17) 
0 

where B is an arbitrary constant. 
It follows from the boundary condition at the 

infinity (14) that w = du/dx -) 0 when x + co. There- 
fore, changing over to the limit x -, 00 in expression 
(17) (the fact corresponds to II = w = 0), it can be 
found that the constant B = 0. 

With the above taken into account, equation (17) 
will be rewritten as 

d(& = - [2,,$&) dull’*. (18) 

The formula will now be introduced to calculate 
the dimensionless diffusion flow onto the wall 
j= -b(l)(&/&),,,. For this, x = 0 will be sub- 
stituted into both parts of equality (18) ; according to 
the first boundary condition (14) this corresponds to 
the value u = 1. Using the inverse Laplacdarson 
transform and taking into account the property 
6(l) = 1, the approximate expression sought for the 
flow can be obtained 

This formula gives an exact result for the constant 
coefficient of diffusion. 

The accuracy of equation (19) is evaluated for some 
specific relationships between the coefficient of 
diffusion and concentration. 

First consider a non-linear problem (1 l), (12) at 

d(c) = 1 -c. (20) 

Its solution is given in ref. [2] and yields the following 
expression of a diffusion flow : 

0.332 
j=----. 

Jz 

(21) 

On the other hand, substituting equation (20) into 
formula (19) one obtains 

Comparison of relations (21) and (22) shows that 
in the given case an error of the proposed approximate 
method is less than 2 % . 

Next consider the exponential dependence of the 
coefficient of diffusion on concentration 

b(c) = exp {A(c- 1)). (23) 

The solution of problem (1 l), (12) (23), obtained 
by a numerical method is given in ref. [3]. The 
following formula was also suggested in that book for 
a diffusion flow : 

0.564 1 - 
j= 1+0.177+ (24) 

which ‘operates’ well within the range - 1.5 < 
I < 3.5. 

Substituting equation (23) into the expression 
under the integral sign (19) gives 

(25) 

Figure 1 presents a comparison of relations (25) 
and (24) (solid and dashed lines, respectively). It is 
seen that the maximum difference between these 
formulae amounts to around 4%. 

Remark 1. Sometimes, instead of the exact non- 
linear equation (11) the following simplified linear 
equation can be used for approximate calculations : 

(26) 

where the constant (6) is equal to the integral mean 
value of the diffusion coefficient 

(6) = 
I 

’ b(c) dc. (27) 
0 

The solution of equation (27) with initial and 
boundary conditions (12) is determined by 

c = d-c (2[(&ll,2) 
where 

exp (-z*) dz 

and the corresponding diffusion flow has the form 

-. 
0.3 1 I 

-1.5 -1 0 1 2 3 

A 

FIG. 1. Diffusion flow to the wall for exponential dependence 
of the coefficient of diffusion on concentration (23) : -, 
numerical calculation [3], equation (24); ---, equation (25) 
obtained by the ‘carry-over’ method of integral transforms; 
-. -. -, equation (3 1) obtained by the method of averaging. 
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At the constant coefficient of diffusion expressions 
(19) and (29) coincide and give an accurate result. 
The validity of the approximate equation (29) will be 
checked on specific examples which were considered 
above. For linear dependence of the coefficient of 
diffusion on concentration (20), equation (29) gives 

(30) 

Comparison of expressions (21) and (30) shows that 
in this case the procedure of averaging equation (27) 
leads to an error of about 20%. Therefore, the accu- 
racy of the earlier obtained equation (22) is an order 
of magnitude higher than that of equation (30). 

Substituting the exponential expression (23) into 
formula (29), with regard for (27), yields 

._ l-e-’ ‘I* 
J- ( > -xi-’ (31) 

Calculations by this formula are presented in Fig. 1 
by a dashed-dotted line. It is seen that the maximum 
error of equation (31) amounts to about 15%. There- 
fore, the accuracy of the carry-over method of integral 
transforms is in this case 3.5 times more accurate than 
the averaging method. 

3. NON-STATIONARY MASS TRANSFER 

COMPOUNDED BY A VOLUMETRIC 

CHEMICAL REACTION 

Consider now mass transfer between a wall and a 
quiescent medium in which there proceeds a chemical 
reaction with the rate F, = F”(C). In dimensionless 
variables the corresponding non-stationary problem 
is formulated as 

2 = 2 -fy(c) (32) 

s=o,c=o; x=o,c= I; x+co,c’o 

where 

C X 
c=--, 

CS 
x=-, 

a 
7+, f”(C)+? 

I 

In the case of the &h-order reaction, corresponding 
to the relation F, = f&C”, where K, is the volumetric 
reaction rate constant, it should be assumed in equa- 
tion (32) that 

Ii(e) = k,c” (33) 

where k, = a2Kvc- ‘ID. 
The approximate solution of non-linear problem 

(33) makes use of the Laplace-Carson transform (3). 
The carrying over of the integral operator under the 
sign of the function fy according to rule (2) will give 
the ordinary differential equation 

(34) 

x = 0, u = 1; .x+03, u-0. (35) 

The introduction of the new variable w by equation 
(15) makes it possible to reduce the order of equation 
(34). This gives the equation with separable variables 
the integral of which has the form 

du = w*, 
drr 

w=dx. (36) 

In deriving this expression, the boundary condition 
at infinity (35) was taken into account. 

Making use of equation (36) and boundary con- 
dition (35) at x = 0, the derivative on the wall surface 
is calculated as 

(sjr_O = - [p+2lh(n) du]“*. (37) 

Applying the inverse Laplace-Carson transform to 
both parts of equation (37), find the diffusion flow 
j = -(at/W,_, 

j = (nr))‘,* exp (-&)+{“* erf (tr)“’ (38) 

where 

{ = 2 ‘jY,(c) dc. 
I 0 

(39) 

The approximate relation (38), (39) provides an 
exact asymptotic result at small and large values of 
the dimensionless time 7. 

For the nth-order reaction it should be assumed in 
equation (38) that 

(40) 

It can be easily verified that in the limiting cases k, + 
0 and k, + co expressions (39) and (40) lead to the 
accurate result. Moreover, for the first-order reaction, 
n = I, equations (38) and (40) are exact. 

4. MASS TRANSFER WITH A VOLUMETRIC 

REACTION WITH THE COEFFICIENT OF 

DIFFUSION BEING ARBITRARILY 

DEPENDENT ON CONCENTRATION 

Consider the equation 

with initial and boundary conditions (12) where 

h(c) = a2Fv(c)l~~,~(G)l 

the rest of the dimensionless quantities are introduced 
in the same way as in equation (1 I) at Co = 0. 

Making use of the method described in Section I, 
pass over in problem (41) (12) to the concentration 
image U. Integrating the resulting ordinary differential 



equation taking into account the attenuation at 
infinity yields 

Taking the rest of this equality at x = 0 and using 
the inverse Laplace-Carson transform, the following 
approximate expression can be found for a diffusion 
flow : 

where 

+ [If* erf (IT) ‘I2 (42) 

A&f, = 0, this formula changes over to equation (19), 
whereas at B = I it changes over to equations (38) 
and (39). 

5. MASS TRANSFER FROM A DROPLET TO A 
FLOW WITH THE GOEFFiCIENT OF DIFFUSION 

BElNO ARBtTRARiLY DEPENDENT Ufd 
~~N~ENTRA~~N 

Consider the external problem of non-stationary 
mass exchange between a droplet (bubble) and a 
steady-state flow. It is assumed that concentration in 
the liquid at the initial time instant is uniform and 
equal to CQ whereas on the droplet surface it is con- 
stant and equal to C,. The equation of non-stationa~ 
mass transfer in a solid phase with allowance for the 
dependence of the coefficient of diffusion on con- 
centration can be written in the form 

dc 
g + Pe (v * grad E) = div [b(c) grad ef (43) 

where Pe = aU/D(CJ is the Peclet number, (I the 
characteristic dimension of a droplet (radius for a 
spherical droplet), fI the characteristic velocity of flow 
(liquid velocity at a distance from a droplet for a 
transIation~ flow); the rest of the d~mensionle~ 
quantities are introduced in the same manner as in 
equation (11). The initial and boundary conditions 
for equation (43) are simiIar to equation (12) where 
the value x = 0 corresponds to the droplet surface. 

In ref. [4] it is shown that at large Peclet numbers 
(in the diffusion boundary iayer appro~~~on~ the 
sofution of the problem on mass exchange between 
droplets and bubbles with a Aow (43), (12) should be 
sought in the farm 

c = c(z, Y) (44) 

where Y is the dimensionless stream function. The 

new variable z - Z(T, 0) (f3 is the coordinate along the 
droplet surface) can be selected so that the unknown 
function (44) will be determined by solving problem 
(t t), (12), where r and x should be substituted by z 
and Yy. ft is important to emphasize that the variable 
z is independent of the function B(c). 

Allowing for the above and using the results of 
Section 2 the following approximate formula for the 
mean Sherwood number is obtained : 

Here, W(b, z) is the mean Sherwood number with the 
coefficient of diffusion being arbitrarily dependent on 
concentration, b = 6(c), and Sh( 1, t) is the mean 
Sherwood number at the constant coeiIicient of 
diffusion, & = 1. It will be recalted that for spherical 
dropkts and bubbles in an itxisyxnmetric flow the 
mean Sherwood number is determined as 

where c is the solution of problem (43), (12) at 
x = r-t ; r and 0 are the dimensionless (related to 
the droplet radius) radial and angular coordinates, 

For translational and axisymmetric shear flows past 
a spherical droplet it should be assumed in equation 
(45), according to ref. {Sj, that 

Sh(l, T} = [--$&cot” (~~)I;’ (46) 

i 

213 for a translational flow, 

Q= Pe = aU_JD(C,) 

3 for a shear Row, Pe = ~2G~~(~~) 

where a is the droplet radius, U, the liquid velocity 
at infinity, G the shear coefficient, and /3 the ratio of 
dynamic viscosities of the droplet and the surrounding 
medium (/I = 0 corresponds ta a gas bubble). 

8. NON-STAT~UNARY UiFFUSlUN 
COMPOUNDED BY A SURFACE REACTiON 

A non-linear problem on non-stationary mass ex- 
change between a quiesceut liquid and a wall on the 
surface of which there proceeds a heterogeneous 
chemicaf reaction with the rate F, = F,(C) is studied. 
It is assumed that at the initial time instant the con- 
centration in the liquid volume is constant and equal 
to C,,. The corresponding equation, initial and bound- 
ary conditions for the concentration are written in the 
form 

ac a2c 
-=--T at ax 

t=O,c=O; x4,$ -s,(c); x-+a3,c--*o 

(48) 
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where the dimensionless variables are introduced in 
the following way : 

Making use of the Laplace-Carson transform (3), 
taking into account rule (2), obtain the ordinary 
differential equation with the non-linear boundary 
condition 

It is important to emphasize that the non-linear 
integral equation (53) obtained with the aid of the 
approximate method is exact for the arbitrary relation 
f, -J(C). The proof of this statement will be given. 

Application of the Laplace-Carson transform to 
linear equation (47), with regard for initial condition 
(48), gives the equation for image (49). The solution 
of this equation, which damps at infinity, is given 
by formula (51). Hence, the diffusion flow image is 
defined as 

d2u 
s=pu (49) du 

g = -f,(u); 

0 ii r=ll 
= -p%, (55) 

x = 0, x-8 abu-ro. (50) Applying the Laplace-Carson inverse transform to 
both parts of this equality, the relationship between 

The general solution of the equation with constant the derivative on the wall and surface concentration 
coefficients (49), which satisfies the conditions of is obtained 
damping at the infinity (50), is given by 

u = u, exp ( -P”~x) (51) 

where u, = u,(p) is the image of the surface con- 
centration which should be determined in the course 
of problem solution, 

Substituting expression (51) into boundary con- 
dition (49) at x = 0 yields the non-linear algebraic 
equation to determine u, 

P”2us =_/xus). (52) 

Using the Laplace-Carson inverse transform [I] 
equation (52), with the correspondence f(uJ 1 L * 

f(c,) taken into account, the following integral equa- 
tion for the surface concentration is obtained : 

(53) 

Eliminating, with the aid of this expression, the 
quantity (&/&x).,,, from the non-linear boundary 
condition on the wall surface (48), the same equation 
(53) is obtained, as was to be shown. 

Remark 2. The solutions obtained by the ‘carry- 
over’ method of integral transforms can be used as 
the first approximation in numerical computer cal- 
culations which are based on interation methods. 
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LA METHODE DE TRAITEMENT DES TRANSFORMEES INTEGRALES DANS DES 
PROBLEMES NON LINEAIRES DE TRANSFERT DE CHALEUR ET DE MASSE 

R&urn&Une methode approchee simple est suggeree pour resoudre des problemes non liniaires de 
transfert variables de chaleur et de masse. La methode garantit la representation precise des conditions 
aux limites qui conduit a un comportement asymptotique correct pour les grands temps et qui donne un 
resultat pr&cis sur les problemes lineaims. On ttudie le transfer? thermique variable entre une paroi et un 
milieu en repos, avec une conductivite thermique dependant arbitrairement de la temp&ature. On considbre 
des problbmes non-Iineaires de transfert de masse avec des reactions volumiques et surfaciques d’ordre 

quelconque. 
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DIE METHODE DER *~BERTRAGUNG~ VON INTEGRALER TRANSFORMATIONEN 
BE1 NICHT-LINEAREN PROBLEMEN DER WARME- UND 

STOFFUBERTRAGUNG 

ZusPmrnenfassung-Es wird eine knfache Niiherungsmethode zum L&en von nicht-linearen Problemen 
der instationlren Writme- und Stoffiibertragung vorgeschlagen. Die Methode garantiert die genaue Erfiil- 
lung von Anfangs- und Randbedingungen, sie fiiii haufig au einer zutreffenden Asymptote bei grogen 
Zeiten und erzielt ein genaues Ergebnis fiir lineare Probleme. Die instation& WLrmeiibertragung zwischen 
einer Wand und einem ruhenden Medium mit beliebig temperaturabhiingiger Wlrmeleitfahigkeit wird 
untersucht. Femer werden instation& Probleme der Stoffubertragung mit volumetrischen und Ober- 

fl%henreaktionen jeglicher Ordnung untersucht. 

METOA IIPOHOCA WHTEl-PAJIbHbIX lTPEOPPA3OBAHWH B HEJIHHEHHbIX 
3A&49AX MACCO- M TEIIJIOIIEPEHOCA 

Ama=Pn-IIpcJaJt araerca npocroL nprr6nuxenn&i hreroa pememta tiennne&nbtx sanaq imcraqnonap 
ttoro m H retutouepeaoca. M~TOA o6ecnemmaer ~omme atutomtemre traqam.rroro n y 
ycnossi& macro npuaomir II npasiutbnoo8 acu~o-rnke npa 6omtmu apememtx II naer romrbdi pesynb- 
rar mm nmteihmtx aanaq. Pacchsorpeu necrannonap~ rennoo6Meu cretutu c trettonamuuog cpenog 
npu npoiiaaonbnofi aanricri~ocrn roa@@uiretrra rennonpoeomiocrn or rehmeparypbr. Hccnenoaanbt 

rrecraunonapftbre aanaqu Macconepenoca c 06ae~ttoif H noncpx~omio~ peauaicii mo6oro nopanaa 


