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Abstract—A simple approximate method for solving non-linear problems of non-stationary mass and heat

transfer is suggested. The method guarantees accurate fulfillment of initial and boundary conditions, often

leads to a correct asymptotic at large times and gives an accurate result for linear problems. Non-stationary

heat transfer between a wall and a quiescent medium with the thermal conductivity coefficient being

arbitrarily dependent on temperature is investigated. Non-stationary problems of mass transfer with
volumetric and surface reactions of any order are investigated.

1. DESCRIPTION OF THE METHOD

THE MOST common way of solving linear problems is
to use different integral transforms of the unknown
function (Laplace—Carson, Mellin and Bessel trans-
forms and others [1]) which can tentatively be written
in the form

u=Lxc )

where ¢ is the unknown function (inverse image), L
some integral operator, and u the image.

In a number of cases transform (1) can also be
successfully used for an approximate analysis of non-
linear problems by ‘carrying over’ the transform
under the function sign according to the rule

Laf(e) =f(Lxc) =f(u) @

where f = f(c) is some non-linear function of the argu-
ment ¢. The validity region of the approximate oper-
ation (2) should be established separately in each
specific case.

Further, the discussion will be limited to the study
of the Laplace~Carson transform which is defined as

]

u=L:cspJ e 7 cdr 3

0

where p is the complex parameter.
Non-linear parabolic equations of the following
form will be considered :

%:d)(x,c,%,%c;) €))]

with the initial and boundary conditions
=0, c=¢(x) %
x=x,c=9(1); x=x3c=9,r) (6)

where @, ¢, V,, ¥, are arbitrary sufficiently smooth
functions.

Applying the Laplace-Carson transform (3) to
problem (4)-(6) and ‘carrying’ it under the sign of the
function ® according to rule (2) gives the approximate
ordinary differential equation and boundary con-
ditions for u

du d?
Plu=9() = <b(x, I d—x—"> )

x=xpu=0(p); x=xju=0a) (8)

where a,(p) =L=*y,;i=1,2.

Having constructed the solution of problem (7),
(8) and then applying the Laplace—Carson inverse
transform to u [1], one can find function c.

The proposed approximate method leads to an
exact solution for any linear problem. It always
guarantees accurate fulfilment of initial and boundary
conditions (5) and (6). Moreover, if the solution of
problem (4)-(6) is stabilized at large times, i.e. there
exists the solution of the stationary problem

de d%
¢<x,c,d—x,w>=0 (9)

x=x,c=4,; x=Xx,,c=4,

(A,. = limy,(z), where i = 1,2) (10)

then the approach described gives a correct asymp-
totic result for T — 0.

The application of the ‘carry-over’ method of inte-
gral transforms will now be illustrated on specific
examples which are of interest for the theory of mass
and heat transfer. As usual, attention will be mostly
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length scale (radius of a droplet, bubble)

concentration

concentration on the surface of a wall,

droplet, bubble

Co concentration of the initial time instant

c dimensionless concentration (determined
in different ways)

D coefficient of diffusion, may be dependent

on concentration, D(C)

D(C)/D(C)

F, surface reaction rate, F,(C), for the nth-
order reaction, K,C"

F, volumetric reaction rate, F,(C), for the

nth-order reaction, X,C"

dimensionless rate of surface reaction,

aF,(C)/DC,, for the nth-order

reaction, f, = k,(1—¢)"

dimensionless rate of volumetric

reaction, a>F,(C)/DC,, for the nth-

order reaction, f, = k,c"

j dimensionless diffusion flow on a wall,

—(0c/0x)¢a0
K, constant of surface reaction rate

aGa R

NOMENCLATURE

K, constant of volumetric reaction rate

k, dimensionless constant of the nth-order
surface reaction rate, aK,C;~'/D

k, dimensionless constant of the nth-order
volumetric reaction rate, a’kK,C"~'/D

n order of reaction

Pe  Peclet number, aU/D(C,)

Sh Sherwood number, equation (46)

t time

U characteristic velocity of liquid

U, translational flow velocity far from a

droplet

concentration image, equation (3)
v dimensionless velocity of liquid
X distance to a wall
x X/a.

Greek symbols

B ratio of droplet to surrounding medium
dynamic viscosities, § = 0 corresponds
to a gas bubble

T dimensionless time, tD/a* or tD(C,)/a>

paid to the derivation of formulae for diffusion (heat)
flows.

2. MASS TRANSFER IN THE CASE OF
ARBITRARY DEPENDENCE OR THE
DIFFUSION COEFFICIENT ON CONCENTRATION

Consider a non-stationary problem of mass transfer
between a wall and a quiescent medium with the
coefficient of diffusion D being arbitrarily dependent
on the concentration C.

The concentration distribution is described by the
non-linear equation

6_c = i ﬁ(c) gﬁ
ox ox

pe (i1)

under the following initial and boundary conditions:

x-— o, c—0.

12)

Here, the dimensionless variables are expressed in
terms of dimensional ones with the aid of the follow-
ing relations:

_ CQ—C
c=C.=C.

t=0,¢=0; x=0,c=1;

tD(Cy)

= 3

, Do = 20

D(C)
where C, is the concentration at the initial time
instant, C, the concentration on the wall, X the dis-
tance to the wall, ¢ the time, and a the quantity which
has the dimensions of length. The function D is intro-

X
x=—,
a

duced in such a way that the condition D(1) =1 is
valid.

An analogous formulation is employed for the
problem on heat transfer between a wall and a
quiescent medium with the thermal conductivity
coefficient being arbitrarily dependent on tem-
perature.

Applying the Laplace-Carson transform to equa-
tion (11), initial and boundary conditions (12),
carrying out the transform under the sign of the func-
tion D, similarly to equation (7), one obtains

d du

x=0u=1; x—o0c,u-0. (14)

Taking into account the fact that the ordinary differ-
ential equation (13) is not explicitly dependent on x,
its order can be reduced by the standard substitution

dufd d
W=d?(d—x=w(—i;>. (15)
This yields

= WAL (D] (16)
pu= wdu[ u)w).

It can be easily checked that the general solution of
this equation has the form
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fu
% J0 uD(u) du = [D(u)w]* + B a7

where B is an arbitrary constant.

It follows from the boundary condition at the
infinity (14) that w = du/dx — 0 when x — . There-
fore, changmg over to the limit x —  in expression
(17) (the fact corresponds to u = w = 0), it can be
found that the constant B = 0.

With the above taken into account, equation (17)

will be rewritten as
du LI 172
5(14)&- = - [ij; uD(u) du] .

The formula will now be introduced to calculate
the dimensionless diffusion flow onto the wall
j= —D(1)(0c/0x) 0. For this, x =0 will be sub-
stituted into both parts of equality (18); according to
the first boundary condition (14) this corresponds to
the value u = |. Using the inverse Laplace—Carson
transform and taking into account the property
D(1) = 1, the approximate expression sought for the
flow can be obtained

2 1 _ t/2
j= [7—[; J; cD(¢) dc] .

This formula gives an exact result for the constant
coefficient of diffusion.

The accuracy of equation (19) is evaluated for some
specific relationships between the coefficient of
diffusion and concentration.

First consider a non-linear problem (11), (12) at

D) =1-c (20)

(18)

19

Its solution is given in ref. [2] and yields the following
expression of a diffusion flow:

0.332
7
On the other hand, substituting equation (20) into
formula (19), one obtains

1 - 0.326
J(3m’)~ Jt )

Comparison of relations (21) and (22) shows that
in the given case an error of the proposed approximate
method is less than 2%.

Next consider the exponential dependence of the
coefficient of diffusion on concentration

D(c) = exp {i(c~1)}. 23)

The solution of problem (11), (12), (23), obtained
by a numerical method is given in ref. {3). The
following formula was also suggested in that book for
a diffusion flow:

Jj= @n

Jj= (22)

0.564 1

T+0.177 @4

j=

AT 33:1-L

177
n the range -15¢

Substltutmg equation (23) into the expression
under the integral sign (19) gives

_[2@+e D]
L mie ]

Figure 1 presents a comparison of relations (25)
and (24) (solid and dashed lines, respectively). It is
seen that the maximum difference between these
formulae amounts to around 4%.

Remark 1. Sometimes, instead of the exact non-
linear equation (11) the following simplified linear

equation can be used for approximate calculations:

de = d%c
gt 7 ox?

(25)
&2y

(26)

where the constant (D) is equal to the integral mean
value of the diffusion coefficient

(D)= fl D(c) de. @27
0

The solution of equation (27) with initial and
boundary conditions (12) is determined by

X
¢ =erfc <W) (28)

where
erfcz = 2 J‘m exp (-z%)dz
\/15 z P

and the corresponding diffusion flow has the form

08
0.7

0.6

jvr

05

04
0.3 1
<15 -1 0 1 2 3
A

FiG. 1. Diffusion flow to the wall for exponential dependence
of the coefficient of diffusion on concentration (23): —,
numerical calculation [3], equation (24); -~—, equation (25)
obtained by the ‘carry-over’ method of integral transforms;
————— , equation (31) obtained by the method of averaging.
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B\
j= —<15>(6x)"0 ( — ) )
At the constant coefficient of diffusion expressions
(19) and (29) coincide and give an accurate result.
The validity of the approximate equation (29) will be
checked on specific examples which were considered
above. For linear dependence of the coefficient of
diffusion on concentration (20), equation (29) gives

0. 399
J (Zm) N

Comparison of expressions (21) and (30) shows that
in this case the procedure of averaging equation (27)
leads to an error of about 20% . Therefore, the accu-
racy of the earlier obtained equation (22) is an order
of magnitude higher than that of equation (30).

Substituting the exponential expression (23) into
formula (29), with regard for (27), yields

| —e-+\2
j=( nit ) )

Calculations by this formula are presented in Fig. 1
by a dashed-dotted line. It is seen that the maximum
error of equation (31) amounts to about 15%. There-
fore, the accuracy of the carry-over method of integral
transforms is in this case 3.5 times more accurate than
the averaging method.

(30

(3H

3. NON-STATIONARY MASS TRANSFER
COMPOUNDED BY A VOLUMETRIC
CHEMICAL REACTION

Consider now mass transfer between a wall and a
quiescent medium in which there proceeds a chemical
reaction with the rate F, = F,(C). In dimensionless
variables the corresponding non-stationary problem
is formulated as

éc
= - 2
P fu(€) (32)
1=0,c=0; x=0,c=1; x—>00,c—0
where
C X 2F(C)
C=C! X =, 2: f()‘_ .

In the case of the nth-order reaction, corresponding
to the relation F, = K,C", where K, is the volumetric
reaction rate constant, it should be assumed in equa-
tion (32) that

L)y =k (33)

where k, = a?K,C?'/D.

The approxnmatc solution of non-linear problem
(33) makes use of the Laplace—Carson transform (3).
The carrying over of the integral operator under the
sign of the function f, according to rule (2) will give
the ordinary differential equation
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dz
el = pu-+f,(u) (34)
x=0u=1; x> ow,u-0. (35)

The introduction of the new variable w by equation
(15) makes it possible to reduce the order of equation
(34). This gives the equation with separable variables
the integral of which has the form

ZJ: [pu+£,(w)] du = w?, (36)

W= —,
X
In deriving this expression, the boundary condition
at infinity (35) was taken into account.
Making use of equation (36) and boundary con-
dition (35) at x = 0, the derivative on the wall surface
is calculated as

du 1 t/2
((—i;)"o = - I:p+2J; L) du:l . 37

Applying the inverse Laplace—Carson transform to
both parts of equation (37), find the diffusion flow
Jj= —(0¢/0x)cm0

j= ()" exp (— 0+ E M erf (40"

where

(38)

1
&= ZJ f.(0) de. 39)
0
The approximate relation (38), (39) provides an
exact asymptotic result at small and large values of
the dimensionless time 7.
For the nth-order reaction it should be assumed in
equation (38) that

2%,
n+l’

{= (40)
It can be easily verified that in the limiting cases k, —
0 and k, — o0 expressions (39) and (40) lead to the
accurate result. Moreover, for the first-order reaction,
n = |, equations (38) and (40) are exact.

4. MASS TRANSFER WITH A VOLUMETRIC
REACTION WITH THE COEFFICIENT OF
DIFFUSION BEING ARBITRARILY
DEPENDENT ON CONCENTRATION

Consider the equation
de
7 6\: Dee )a
with initial and boundary conditions (12), where
£.(©) = a*F(O)/[C.D(C,)]

the rest of the dimensionless quantities are introduced
in the same way as in equation (11) at Co = 0.
Making use of the method described in Section 1,
pass over in problem (41), (12) to the concentration
image u. Integrating the resulting ordinary differential

/(0 @1
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PO ~d
nuauon L

s
(5

equation taking into account th
infinity yields

-!2

} {puD() + £, (D ()] du = LE{:&)

Taking the rest of this equality at x = 0 and using
the inverse Laplace-Carson transform, the following
approximate expression can be found for a diffusion
flow:

fa v _
n; } eD{c) ch exp (—{1)
+{ P erf (L)' (42)
where
J' F(cD{c) de
{="—F—.
j eD(c) de
0
At f, = 0, this formula changes over to equation (19),

whereas at D = | it changes over to equations (38)
and { IO\

Qarls (I

5. MASS TRANSEER

W VIS S § RSN {51

FLOW WITH THE COEFFICIENT OF DIFFUSION
BEING ARBITRARILY DEPENDENT ON
CONCENTRATION

FROM A DROPLET TO A

--v"nw-v---

Consider the external problem of non-stationary
mass exchange between a droplet (bubble) and a
steady-state flow. It is assumed that concentration in
the liquid at the initial time instant is uniform and
equal to €, whereas on the droplet surface it is con-
stant and equal to C,. The equation of non-stationary

mass transfer in 2 solid phase with allowance for the

ARG WAL A5t a sl 2GRS WWaias AV WRAILS AN WGV

dependence of the coefficient of diffusion on con-
centration can be written in the form

—2—:+Pe (v-grad ¢) = div [D(c) grad €]
where Pe = qU/D{C,) is the Peclet number, a the
characteristic dimension of a droplet (radius for a
sphericali dropiet), U/ the characteristic veiocity of fiow
(liquid velocity at a distance from 2 droplet for a
translational flow); the rest of the dimensionless

" quantities are introduced in the same manner as in
equation (11). The initial and boundary conditions

for equation (43) are similar to equation (12) where

Quation aie Sillias S iQOll \ié) ansy

the value x = 0 corresponds to th¢ droplet surface.

In ref. [4] it is shown that at large Peclet numbers
{in the diffusion boundary layer approximation) the
solution of the problem on mass exchange between
droplets and bubbles with a flow (43), (12) should be
sought in the form

43)

¢ =c(z,'¥) (44)

where W is the dimensionless stream function. The
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elnbta v o wla o the rdinata aloang tha
AL & =< 4\!., U} \U lo e COOraInate fuuua ul\«

ncw var
droplet surface) can be selected so that the unknown
function (44) will be determined by solving problem
(11), {12), where 7 and x should be substituted by z
and . It is important to emphasize that the variable
z is independent of the function J(c).

Allowing for the above and using the results of
Section 2 the following approximate formula for the

mean Sherwood number is obtained :
2
ShD, ) {2 f cD{ci—l

Sh{i, 1)
Here, Sh(D, 1) is the mean Sherwood number with the
coefficient of diffusion being arbitrarily dependent on
concentration, D = D(c), and Sh(l,t) is the mean
Sherwood number at the constant coefficient of
diffusion, J = 1. Tt will be recalled that for spherical
droplets and bubbles in an axisymmetric flow the

mean Sherwood number is determined as
mMean Saviwooa NuUmodt & i

Sh(D,1) = - § f sin 0[-15(0)—-‘!

UI'J,- 1

(45)

where ¢ is the solution of problem (43), (12) at
.- = fr o amd 1 ava tha ditvnssclcmlaces fualabaid s
AT FTT 0 7RG U alv UG UWHHNRAOIUHICOS {1lialily W
the droplet radius) radial and angular coordinates,

For translational and axisymmetric shear flows past
a spherical droplet it should be assumed in equation
(45), according to ref. {5, that

[ oPe Q Pe

Sh(l, 1) = Lt(ﬁ-f- 7 coth (/H—I

2/3 for a translational flow,
Pe=al_/D(C,)

{3 for a shear flow, Pe =

N -

I

a*G|D(C))

Q:

where a is the droplet radius, U, the liquid velocity
at infinity, G the shear coefficient, and B the ratio of
dynamic viscosities of the droplet and the surrounding

medium (R = 0 corresnonds to 3 gas bnhblp\

AVRaIaL SPIIIES

6. NON-STATIONARY DIFFUSION
COMPOQUNDED BY A SURFACE REACTION

A non-linear problem on non-stationary mass ex-
change between a quiescent liquid and a wall on the
surface of which there proceeds a heterogeneous

chaminal vaantian with the vata L7 E ™Y 5o atridiad
‘ril\tllﬂvﬂl l\'ﬂ\'&lvii I G LS O [y =g s‘\;} I3 JLUNIAG .

It is assumed that at the initial time instant the con-
centration in the liquid volume is constant and equal
to C,. The corresponding equation, initial and bound-
ary conditions for the concentration are written in the

form
dc %
55 “n

dc
t=0,c=0; x= 0 =-——j§(c), x—=a,c0

“8)
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where the dimensionless variables are introduced in
the following way :

Co—C X Dt
0 = = fle) =

ak(C)
DC,

Making use of the Laplace-Carson transform (3),
taking into account rule (2), obtain the ordinary
differential equation with the non-linear boundary
condition

du_ 49
dxz = pu ( )
x=0, g—;=—f,(u); x—o0o,u-0. (50)

The general solution of the equation with constant
coefficients (49), which satisfies the conditions of
damping at the infinity (50), is given by

u = u,exp (—p'*x) (51

where u, = u,(p) is the image of the surface con-
centration which should be determined in the course
of problem solution,

Substituting expression (51) into boundary con-
dition (49) at x = 0 yields the non-linear algebraic
equation to determine u,

p"u, = £,(u,).

Using the Laplace-Carson inverse transform [1]
equation (52), with the correspondence f(u,) ~ L »*
Ac,) taken into account, the following integral equa-
tion for the surface concentration is obtained :

d " ¢(4)dd
& Jo G- A

(52)

(53)

This equation can be integrated numerically. The
diffusion flow is recalculated in terms of the surface
concentration by

J=1le) (54

which is the consequence of the non-linear boundary
condition (48) on the wall surface at x = 0.

A. D. PoLYaNIN and V. V. DiL'MAN

It is important to emphasize that the non-linear
integral equation (53) obtained with the aid of the
approximate method is exact for the arbitrary relation
S = f{(c). The proof of this statement will be given.

Application of the Laplace-Carson transform to
linear equation (47), with regard for initial condition
(48), gives the equation for image (49). The solution
of this equation, which damps at infinity, is given
by formula (51). Hence, the diffusion flow image is

defined as
du 2
(E)_C)r._.o = —p TU.

Applying the Laplace-Carson inverse transform to
both parts of this equality, the relationship between
the derivative on the wall and surface concentration
is obtained

(&) o d [feddi
0Xfeeo  dt Jo (t=A)7

Eliminating, with the aid of this expression, the
quantity (6c/0x).., from the non-linear boundary
condition on the wall surface (48), the same equation
(53) is obtained, as was to be shown.

Remark 2. The solutions obtained by the ‘carry-
over’ method of integral transforms can be used as
the first approximation in numerical computer cal-
culations which are based on interation methods.

(53
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LA METHODE DE TRAITEMENT DES TRANSFORMEES INTEGRALES DANS DES
PROBLEMES NON LINEAIRES DE TRANSFERT DE CHALEUR ET DE MASSE

Résumé—Une méthode approchée simple est suggérée pour résoudre des problémes non linéaires de

transfert variables de chaleur et de masse. La méthode garantit la représentation précise des conditions

aux limites qui conduit & un comportement asymptotique correct pour les grands temps et qui donne un

résultat précis sur les problémes linéaires. On étudie le transfert thermique variable entre une paroi et un

milieu en repos, avec une conductivité thermique dépendant arbitrairement de la température. On considére

des problémes non-linéaires de transfert de masse avec des réactions volumiques et surfaciques d’ordre
quelconque.
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DIE METHODE DER “UBERTRAGUNG" VON INTEGRALER TRANSFORMATIONEN
BEI NICHT-LINEAREN PROBLEMEN DER WARME- UND
STOFFUBERTRAGUNG

Zusammenfassung—Es wird eine einfache Niherungsmethode zum Ldsen von nicht-linearen Problemen

der instationiren Wirme- und Stoffiibertragung vorgeschlagen. Die Methode garantiert die genaue Erfiil-

lung von Anfangs- und Randbedingungen, sie fithrt hiufig zu einer zutreffenden Asymptote bei grofen

Zeiten und erzielt ein genaues Ergebnis fiir lineare Probleme. Die instationdre Wirmeibertragung zwischen

einer Wand und einem ruhenden Medium mit beliebig temperaturabhingiger Wirmeleitfahigkeit wird

untersucht. Ferner werden instationire Probleme der Stoffiibertragung mit volumetrischen und Ober-
flichenreaktionen jeglicher Ordnung untersucht.

METO[ INTPOHOCA MHTETPAJIbHBIX NPEOBPA30BAHMA B HEJIMHEAHBIX
3AJAUAX MACCO- U TEIUIONEPEHOCA

Amnorauus—{Ipeanaraerca npoctoli NpHOAHKCHHLI METOL PCILICHAA HEBHEHHDBIX 32184 HECTALMOHAD-
HOrO Macco- H Tennoncperoca. Meton obecneunpacT TOYHOC BHIMONHEHHE HAYAILHOTO H IPAHHYHBIX
ycnosuil, 4aCTO NPUBOAMT K NPABAILHON ACHMIITOTHKE NPH GONBIUIMX BPEMEHAX H JacT TOMHBIA pe3yib-
TaT JUIR JHHCHHKX 3aAa4. PaccMOTpeH HecTauHOHApHBIH TennooGMen cTeHxu ¢ HenoxsHxHOR cpenoi
NpH NPOH3BONbHON 3aBHCHMOCTH K03(}HUHEHTa TEIIONPOBOAHOCTH OT TemmepaTypul. Mccnenosanm
HECTAUHOHAPHBIC 3a12%A MACCONCPEHOCa C 00BEMHON M MOBEPXHOCTHONR peaxuuedt moSoro mopaaxa.
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